briser subitement, auraient été former autour du Soleil plusieurs anneaux concentriques semblables à celui de Saturne. A leur tour, ces anneaux de matière cosmique, pris d'un mouvement de rotation autour de la masse centrale, se seraient brisés et décomposés en nébulosités secondaires, c'est-à-dire en planètes. Si l'observateur eût alors concentré toute son attention sur ces planètes, il les aurait vues se comporter exactement comme le Soleil et donner naissance à un ou plusieurs anneaux cosmiques, origines de ces astres d'ordre inférieur qu'on appelle satellites. Ainsi donc, en remontant de l'atome à la molécule, de la molécule à l'amas nébuleux, de l'amas nébuleux à la nébuleuse, de la nébuleuse à l'étoile principale, de l'étoile principale au Soleil, du Soleil à la planète, et de la planète au satellite, on a toute la série des transformations subies par les corps célestes depuis les premiers jours du monde. Le Soleil semble perdu dans les immensités du monde stellaire, et cependant il est rattaché, par les théories actuelles de la science, à la nébuleuse de la Voie lactée. Centre d'un monde, et si petit qu'il paraisse au milieu des régions éthérées, il est cependant énorme, car sa grosseur est quatorze cent mille fois celle de la Terre. Autour de lui gravitent huit planètes, sorties de ses entrailles mêmes aux premiers temps de la Création. Ce sont, en allant du plus proche de ces astres au plus éloigné, Mercure, Vénus, la Terre, Mars Jupiter, Saturne, Uranus et Neptune. De plus entre Mars et Jupiter circulent régulièrement d'autres corps moins considérables, peut-être les débris errants d'un astre brisé en plusieurs milliers de morceaux, dont le télescope a reconnu quatre-vingt-dix-sept jusqu'à ce jour. [Quelques-uns de ces astéroïdes sont assez petits pour qu'on puisse en faire le tour dans l'espace d'une seule journée en marchant au pas gymnastique.] De ces serviteurs que le Soleil maintient dans leur orbite elliptique par la grande loi de la gravitation, quelques-uns possèdent à leur tour des satellites. Uranus en a huit, Saturne huit, Jupiter quatre, Neptune trois peut-être, la Terre un; ce dernier, l'un des moins importants du monde solaire, s'appelle la Lune, et c'est lui que le génie audacieux des Américains prétendait conquérir. L'astre des nuits, par sa proximité relative et le spectacle rapidement renouvelé de ses phases diverses, a tout d'abord partagé avec le Soleil l'attention des habitants de la Terre; mais le Soleil est fatigant au regard, et les splendeurs de sa lumière obligent ses contemplateurs à baisser les yeux. La blonde Phoebé, plus humaine au contraire, se laisse complaisamment voir dans sa grâce modeste; elle est douce à l'œil, peu ambitieuse, et cependant, elle se permet parfois d'éclipser son frère, le radieux Apollon, sans jamais être éclipsée par lui. Les mahométans ont compris la reconnaissance qu'ils devaient à cette fidèle amie de la Terre, et ils ont réglé leur mois sur sa révolution [Vingt-neuf jours et demi environ.]. Les premiers peuples vouèrent un culte particulier à cette chaste déesse. Les Égyptiens l'appelaient Isis; les Phéniciens la nommaient Astarté; les Grecs l'adorèrent sous le nom de Phoebé, fille de Latone et de Jupiter, et ils expliquaient ses éclipses par les visites mystérieuses de Diane au bel Endymion. A en croire la légende mythologique, le lion de Némée parcourut les campagnes de la Lune avant son apparition sur la Terre, et le poète Agésianax, cité par Plutarque, célébra dans ses vers ces doux yeux, ce nez charmant et cette bouche aimable, formés par les parties lumineuses de l'adorable Séléné. Mais si les Anciens comprirent bien le caractère, le tempérament, en un mot, les qualités morales de la Lune au point de vue mythologique, les plus savants d'entre eux demeurèrent fort ignorants en sélénographie. Cependant, plusieurs astronomes des époques reculées découvrirent certaines particularités confirmées aujourd'hui par la science. Si les Arcadiens prétendirent avoir habité la Terre à une époque où la Lune n'existait pas encore, si Tatius la regarda comme un fragment détaché du disque solaire, si Cléarque, le disciple d'Aristote, en fit un miroir poli sur lequel se réfléchissaient les images de l'Océan, si d'autres enfin ne virent en elle qu'un amas de vapeurs exhalées par la Terre, ou un globe moitié feu, moitié glace, qui tournait sur lui-même, quelques savants, au moyen d'observations sagaces, à défaut d'instruments d'optique, soupçonnèrent la plupart des lois qui régissent l'astre des nuits. Ainsi Thalès de Milet, 460 ans avant J.-C., émit l'opinion que la Lune était éclairée par le Soleil. Aristarque de Samos donna la véritable explication de ses phases. Cléomène enseigna qu'elle brillait d'une lumière réfléchie. Le Chaldéen Bérose découvrit que la durée de son mouvement de rotation était égale à celle de son mouvement de révolution, et il expliqua de la sorte le fait que la Lune présente toujours la même face. Enfin Hipparque, deux siècles avant l'ère chrétienne, reconnut quelques inégalités dans les mouvements apparents du satellite de la Terre. Ces diverses observations se confirmèrent par la suite et profitèrent aux nouveaux astronomes. Ptolémée, au IIe siècle, l'Arabe Aboul-Wéfa, au Xe, complétèrent les remarques d'Hipparque sur les inégalités que subit la Lune en suivant la ligne ondulée de son orbite sous l'action du Soleil. Puis Copernic [Voir -Les Fondateurs de l'Astronomie moderne-, un livre admirable de M. J. Bertrand, de l'Institut.], au XVe siècle, et Tycho Brahé, au XVIe, exposèrent complètement le système du monde et le rôle que joue la Lune dans l'ensemble des corps célestes. A cette époque, ses mouvements étaient à peu près déterminés; mais de sa constitution physique on savait peu de chose. Ce fut alors que Galilée expliqua les phénomènes de lumière produits dans certaines phases par l'existence de montagnes auxquelles il donna une hauteur moyenne de quatre mille cinq cents toises. Après lui, Hevelius, un astronome de Dantzig, rabaissa les plus hautes altitudes à deux mille six cents toises; mais son confrère Riccioli les reporta à sept mille. Herschell, à la fin du XVIIIe siècle, armé d'un puissant télescope, réduisit singulièrement les mesures précédentes. Il donna dix-neuf cents toises aux montagnes les plus élevées, et ramena la moyenne des différentes hauteurs à quatre cents toises seulement. Mais Herschell se trompait encore, et il fallut les observations de Shroeter, Louville, Halley, Nasmyth, Bianchini, Pastorf, Lohrman, Gruithuysen, et surtout les patientes études de MM. Beer et Moedeler, pour résoudre définitivement la question. Grâce à ces savants, l'élévation des montagnes de la Lune est parfaitement connue aujourd'hui. MM. Beer et Moedeler ont mesuré dix-neuf cent cinq hauteurs, dont six sont au-dessus de deux mille six cents toises, et vingt-deux au-dessus de deux mille quatre cents [La hauteur du mont Blanc au-dessus de la mer est de 4813 mètres.]. Leur plus haut sommet domine de trois mille huit cent et une toises la surface du disque lunaire. En même temps, la reconnaissance de la Lune se complétait; cet astre apparaissait criblé de cratères, et sa nature essentiellement volcanique s'affirmait à chaque observation. Du défaut de réfraction dans les rayons des planètes occultées par elle, on conclut que l'atmosphère devait presque absolument lui manquer. Cette absence d'air entraînait l'absence d'eau. Il devenait donc manifeste que les Sélénites, pour vivre dans ces conditions, devaient avoir une organisation spéciale et différer singulièrement des habitants de la Terre. Enfin, grâce aux méthodes nouvelles, les instruments plus perfectionnés fouillèrent la Lune sans relâche, ne laissant pas un point de sa face inexploré, et cependant son diamètre mesure deux mille cent cinquante milles [Huit cent soixante-neuf lieues, c'est-à-dire un peu plus du quart du rayon terrestre.], sa surface est la treizième partie de la surface du globe [Trente-huit millions de kilomètres carrés.], son volume la quarante-neuvième partie du volume du sphéroïde terrestre; mais aucun de ses secrets ne pouvait échapper à l'œil des astronomes, et ces habiles savants portèrent plus loin encore leurs prodigieuses observations. Ainsi ils remarquèrent que, pendant la pleine Lune, le disque apparaissait dans certaines parties rayé de lignes blanches, et pendant les phases, rayé de lignes noires. En étudiant avec une plus grande précision, ils parvinrent à se rendre un compte exact de la nature de ces lignes. C'étaient des sillons longs et étroits, creusés entre des bords parallèles, aboutissant généralement aux contours des cratères; ils avaient une longueur comprise entre dix et cent milles et une largeur de huit cents toises. Les astronomes les appelèrent des rainures, mais tout ce qu'ils surent faire, ce fut de les nommer ainsi. Quant à la question de savoir si ces rainures étaient des lits desséchés d'anciennes rivières ou non, ils ne purent la résoudre d'une manière complète. Aussi les Américains espéraient bien déterminer, un jour ou l'autre, ce fait géologique. Ils se réservaient également de reconnaître cette série de remparts parallèles découverts à la surface de la Lune par Gruithuysen, savant professeur de Munich, qui les considéra comme un système de fortifications élevées par les ingénieurs sélénites. Ces deux points, encore obscurs, et bien d'autres sans doute, ne pouvaient être définitivement réglés qu'après une communication directe avec la Lune. Quant à l'intensité de sa lumière, il n'y avait plus rien à apprendre à cet égard; on savait qu'elle est trois cent mille fois plus faible que celle du Soleil, et que sa chaleur n'a pas d'action appréciable sur les thermomètres; quant au phénomène connu sous le nom de lumière cendrée, il s'explique naturellement par l'effet des rayons du Soleil renvoyés de la Terre à la Lune, et qui semblent compléter le disque lunaire, lorsque celui-ci se présente sous la forme d'un croissant dans ses première et dernière phases. Tel était l'état des connaissances acquises sur le satellite de la Terre, que le Gun-Club se proposait de compléter à tous les points de vue, cosmographiques, géologiques, politiques et moraux. VI -------------------- CE QU'IL N'EST PAS POSSIBLE D'IGNORER ET CE QU'IL N'EST PLUS PERMIS DE CROIRE DANS LES ÉTATS-UNIS La proposition Barbicane avait eu pour résultat immédiat de remettre à l'ordre du jour tous les faits astronomiques relatifs à l'astre des nuits. Chacun se mit à l'étudier assidûment. Il semblait que la Lune apparût pour la première fois sur l'horizon et que personne ne l'eût encore entrevue dans les cieux. Elle devint à la mode; elle fut la lionne du jour sans en paraître moins modeste, et prit rang parmi les «étoiles» sans en montrer plus de fierté. Les journaux ravivèrent les vieilles anecdotes dans lesquelles ce «Soleil des loups» jouait un rôle; ils rappelèrent les influences que lui prêtait l'ignorance des premiers âges; ils le chantèrent sur tous les tons; un peu plus, ils eussent cité de ses bons mots; l'Amérique entière fut prise de sélénomanie. De leur côté, les revues scientifiques traitèrent plus spécialement les questions qui touchaient à l'entreprise du Gun-Club; la lettre de l'Observatoire de Cambridge fut publiée par elles, commentée et approuvée sans réserve. Bref, il ne fut plus permis, même au moins lettré des Yankees, d'ignorer un seul des faits relatifs à son satellite, ni à la plus bornée des vieilles mistress d'admettre encore de superstitieuses erreurs à son endroit. La science leur arrivait sous toutes les formes; elle les pénétrait par les yeux et les oreilles; impossible d'être un âne...en astronomie. Jusqu'alors, bien des gens ignoraient comment on avait pu calculer la distance qui sépare la Lune de la Terre. On profita de la circonstance pour leur apprendre que cette distance s'obtenait par la mesure de la parallaxe de la Lune. Si le mot parallaxe semblait les étonner, on leur disait que c'était l'angle formé par deux lignes droites menées de chaque extrémité du rayon terrestre jusqu'à la Lune. Doutaient-ils de la perfection de cette méthode, on leur prouvait immédiatement que, non seulement cette distance moyenne était bien de deux cent trente-quatre mille trois cent quarante-sept milles (-- 94,330 lieues), mais encore que les astronomes ne se trompaient pas de soixante-dix milles (-- 30 lieues). A ceux qui n'étaient pas familiarisés avec les mouvements de la Lune, les journaux démontraient quotidiennement qu'elle possède deux mouvements distincts, le premier dit de rotation sur un axe, le second dit de révolution autour de la Terre, s'accomplissant tous les deux dans un temps égal, soit vingt-sept jours et un tiers [C'est la durée de la révolution sidérale, c'est-à-dire le temps que la Lune met à revenir à une même étoile.]. Le mouvement de rotation est celui qui crée le jour et la nuit à la surface de la Lune; seulement il n'y a qu'un jour, il n'y a qu'une nuit par mois lunaire, et ils durent chacun trois cent cinquante-quatre heures et un tiers. Mais, heureusement pour elle, la face tournée vers le globe terrestre est éclairée par lui avec une intensité égale à la lumière de quatorze Lunes. Quant à l'autre face, toujours invisible, elle a naturellement trois cent cinquante-quatre heures d'une nuit absolue, tempérée seulement par cette «pâle clarté qui tombe des étoiles». Ce phénomène est uniquement dû à cette particularité que les mouvements de rotation et de révolution s'accomplissent dans un temps rigoureusement égal, phénomène commun, suivant Cassini et Herschell, aux satellites de Jupiter, et très probablement à tous les autres satellites. Quelques esprits bien disposés, mais un peu rétifs, ne comprenaient pas tout d'abord que, si la Lune montrait invariablement la même face à la Terre pendant sa révolution, c'est que, dans le même laps de temps, elle faisait un tour sur elle-même. A ceux-là on disait: «Allez dans votre salle à manger, et tournez autour de la table de manière à toujours en regarder le centre; quand votre promenade circulaire sera achevée, vous aurez fait un tour sur vous-même, puisque votre œil aura parcouru successivement tous les points de la salle. Eh bien! la salle, c'est le Ciel, la table, c'est la Terre, et la Lune, c'est vous!» Et ils s'en allaient enchantés de la comparaison. Ainsi donc, la Lune montre sans cesse la même face à la Terre; cependant, pour être exact, il faut ajouter que, par suite d'un certain balancement du nord au sud et de l'ouest à l'est appelé «libration», elle laisse apercevoir un peu plus de la moitié de son disque, soit les cinquante-sept centièmes environ. Lorsque les ignorants en savaient autant que le directeur de l'Observatoire de Cambridge sur le mouvement de rotation de la Lune, ils s'inquiétaient beaucoup de son mouvement de révolution autour de la Terre, et vingt revues scientifiques avaient vite fait de les instruire. Ils apprenaient alors que le firmament, avec son infinité d'étoiles, peut être considéré comme un vaste cadran sur lequel la Lune se promène en indiquant l'heure vraie à tous les habitants de la Terre; que c'est dans ce mouvement que l'astre des nuits présente ses différentes phases; que la Lune est pleine, quand elle est en opposition avec le Soleil, c'est-à-dire lorsque les trois astres sont sur la même ligne, la Terre étant au milieu; que la Lune est nouvelle quand elle est en conjonction avec le Soleil, c'est-à-dire lorsqu'elle se trouve entre la Terre et lui; enfin que la Lune est dans son premier ou dans son dernier quartier, quand elle fait avec le Soleil et la Terre un angle droit dont elle occupe le sommet. Quelques Yankees perspicaces en déduisaient alors cette conséquence, que les éclipses ne pouvaient se produire qu'aux époques de conjonction ou d'opposition, et ils raisonnaient bien. En conjonction, la Lune peut éclipser le Soleil, tandis qu'en opposition, c'est la Terre qui peut l'éclipser à son tour, et si ces éclipses n'arrivent pas deux fois par lunaison, c'est parce que le plan suivant lequel se meut la Lune est incliné sur l'écliptique, autrement dit, sur le plan suivant lequel se meut la Terre. Quant à la hauteur que l'astre des nuits peut atteindre au-dessus de l'horizon, la lettre de l'Observatoire de Cambridge avait tout dit à cet égard. Chacun savait que cette hauteur varie suivant la latitude du lieu où on l'observe. Mais les seules zones du globe pour lesquelles la Lune passe au zénith, c'est-à-dire vient se placer directement au-dessus de la tête de ses contemplateurs, sont nécessairement comprises entre les vingt-huitièmes parallèles et l'équateur. De là cette recommandation importante de tenter l'expérience sur un point quelconque de cette partie du globe, afin que le projectile pût être lancé perpendiculairement et échapper ainsi plus vite à l'action de la pesanteur. C'était une condition essentielle pour le succès de l'entreprise, et elle ne laissait pas de préoccuper vivement l'opinion publique. Quant à la ligne suivie par la Lune dans sa révolution autour de la Terre, l'Observatoire de Cambridge avait suffisamment appris, même aux ignorants de tous les pays, que cette ligne est une courbe rentrante, non pas un cercle, mais bien une ellipse, dont la Terre occupe un des foyers. Ces orbites elliptiques sont communes à toutes les planètes aussi bien qu'à tous les satellites, et la mécanique rationnelle prouve rigoureusement qu'il ne pouvait en être autrement. Il était bien entendu que la Lune dans son apogée se trouvait plus éloignée de la Terre, et plus rapprochée dans son périgée. Voilà donc ce que tout Américain savait bon gré mal gré, ce que personne ne pouvait décemment ignorer. Mais si ces vrais principes se vulgarisèrent rapidement, beaucoup d'erreurs, certaines craintes illusoires, furent moins faciles à déraciner. Ainsi, quelques braves gens, par exemple, soutenaient que la Lune était une ancienne comète, laquelle, en parcourant son orbite allongée autour du Soleil, vint à passer près de la Terre et se trouva retenue dans son cercle d'attraction. Ces astronomes de salon prétendaient expliquer ainsi l'aspect brûlé de la Lune, malheur irréparable dont ils se prenaient à l'astre radieux. Seulement, quand on leur faisait observer que les comètes ont une atmosphère et que la Lune n'en a que peu ou pas, ils restaient fort empêchés de répondre. D'autres, appartenant à la race des trembleurs, manifestaient certaines craintes à l'endroit de la Lune; ils avaient entendu dire que, depuis les observations faites au temps des Califes, son mouvement de révolution s'accélérait dans une certaine proportion; ils en déduisaient de là, fort logiquement d'ailleurs, qu'à une accélération de mouvement devait correspondre une diminution dans la distance des deux astres, et que, ce double effet se prolongeant à l'infini, la Lune finirait un jour par tomber sur la Terre. Cependant, ils durent se rassurer et cesser de craindre pour les générations futures, quand on leur apprit que, suivant les calculs de Laplace, un illustre mathématicien français, cette accélération de mouvement se renferme dans des limites fort restreintes, et qu'une diminution proportionnelle ne tardera pas à lui succéder. Ainsi donc, l'équilibre du monde solaire ne pouvait être dérangé dans les siècles à venir. Restait en dernier lieu la classe superstitieuse des ignorants; ceux-là ne se contentent pas d'ignorer, ils savent ce qui n'est pas, et à propos de la Lune ils en savaient long. Les uns regardaient son disque comme un miroir poli au moyen duquel on pouvait se voir des divers points de la Terre et se communiquer ses pensées. Les autres prétendaient que sur mille nouvelles Lunes observées, neuf cent cinquante avaient amené des changements notables, tels que cataclysmes, révolutions, tremblements de terre, déluges, etc.; ils croyaient donc à l'influence mystérieuse de l'astre des nuits sur les destinées humaines; ils le regardaient comme le «véritable contre poids» de l'existence; ils pensaient que chaque Sélénite était rattaché à chaque habitant de la Terre par un lien sympathique; avec le docteur Mead, ils soutenaient que le système vital lui est entièrement soumis, prétendant, sans en démordre, que les garçons naissent surtout pendant la nouvelle Lune, et les filles pendant le dernier quartier, etc., etc. Mais enfin il fallut renoncer à ces vulgaires erreurs, revenir à la seule vérité, et si la Lune, dépouillée de son influence, perdit dans l'esprit de certains courtisans de tous les pouvoirs, si quelques dos lui furent tournés, l'immense majorité se prononça pour elle. Quant aux Yankees, ils n'eurent plus d'autre ambition que de prendre possession de ce nouveau continent des airs et d'arborer à son plus haut sommet le pavillon étoilé des États-Unis d'Amérique. VII -------------------- L'HYMNE DU BOULET L'Observatoire de Cambridge avait, dans sa mémorable lettre du 7 octobre, traité la question au point de vue astronomique; il s'agissait désormais de la résoudre mécaniquement. C'est alors que les difficultés pratiques eussent paru insurmontables en tout autre pays que l'Amérique. Ici ce ne fut qu'un jeu. Le président Barbicane avait, sans perdre de temps, nommé dans le sein du Gun-Club un Comité d'exécution. Ce Comité devait en trois séances élucider les trois grandes questions du canon, du projectile et des poudres; il fut composé de quatre membres très savants sur ces matières: Barbicane, avec voix prépondérante en cas de partage, le général Morgan, le major Elphiston, et enfin l'inévitable J.-T. Maston, auquel furent confiées les fonctions de secrétaire-rapporteur. Le 8 octobre, le Comité se réunit chez le président Barbicane, 3, Republican-street. Comme il était important que l'estomac ne vînt pas troubler par ses cris une aussi sérieuse discussion, les quatre membres du Gun-Club prirent place à une table couverte de sandwiches et de théières considérables. Aussitôt J.-T. Maston vissa sa plume à son crochet de fer, et la séance commença. Barbicane prit la parole: «Mes chers collègues, dit-il, nous avons à résoudre un des plus importants problèmes de la balistique, cette science par excellence, qui traite du mouvement des projectiles, c'est-à-dire des corps lancés dans l'espace par une force d'impulsion quelconque, puis abandonnés à eux-mêmes. --Oh! la balistique! la balistique! s'écria J.-T. Maston d'une voix émue. --Peut-être eût-il paru plus logique, reprit Barbicane, de consacrer cette première séance à la discussion de l'engin... --En effet, répondit le général Morgan. --Cependant, reprit Barbicane, après mûres réflexions, il m'a semblé que la question du projectile devait primer celle du canon, et que les dimensions de celui-ci devaient dépendre des dimensions de celui-là. --Je demande la parole», s'écria J.-T. Maston. La parole lui fut accordée avec l'empressement que méritait son passé magnifique. «Mes braves amis, dit-il d'un accent inspiré, notre président a raison de donner à la question du projectile le pas sur toutes les autres! Ce boulet que nous allons lancer à la Lune, c'est notre messager, notre ambassadeur, et je vous demande la permission de le considérer à un point de vue purement moral. Cette façon nouvelle d'envisager un projectile piqua singulièrement la curiosité des membres du Comité; ils accordèrent donc la plus vive attention aux paroles de J.-T. Maston. «Mes chers collègues, reprit ce dernier, je serai bref; je laisserai de côté le boulet physique, le boulet qui tue, pour n'envisager que le boulet mathématique, le boulet moral. Le boulet est pour moi la plus éclatante manifestation de la puissance humaine; c'est en lui qu'elle se résume tout entière; c'est en le créant que l'homme s'est le plus rapproché du Créateur! --Très bien! dit le major Elphiston. --En effet, s'écria l'orateur, si Dieu a fait les étoiles et les planètes, l'homme a fait le boulet, ce critérium des vitesses terrestres, cette réduction des astres errant dans l'espace, et qui ne sont, à vrai dire, que des projectiles! A Dieu la vitesse de l'électricité, la vitesse de la lumière, la vitesse des étoiles, la vitesse des comètes, la vitesse des planètes, la vitesse des satellites, la vitesse du son, la vitesse du vent! Mais à nous la vitesse du boulet, cent fois supérieure à la vitesse des trains et des chevaux les plus rapides! J.-T. Maston était transporté; sa voix prenait des accents lyriques en chantant cet hymne sacré du boulet. «Voulez-vous des chiffres? reprit-il, en voilà d'éloquents! Prenez simplement le modeste boulet de vingt-quatre [C'est-à-dire pesant vingt-quatre livres.]; s'il court huit cent mille fois moins vite que l'électricité, six cent quarante fois moins vite que la lumière, soixante-seize fois moins vite que la Terre dans son mouvement de translation autour du Soleil, cependant, à la sortie du canon, il dépasse la rapidité du son [Ainsi, quand on a entendu la détonation de la bouche à feu on ne peut plus être frappé par le boulet.], il fait deux cents toises à la seconde, deux mille toises en dix secondes, quatorze milles à la minute (-- 6 lieues), huit cent quarante milles à l'heure (-- 360 lieues), vingt mille cent milles par jour (-- 8,640 lieues), c'est-à-dire la vitesse des points de l'équateur dans le mouvement de rotation du globe, sept millions trois cent trente-six mille cinq cents milles par an (-- 3,155,760 lieues). Il mettrait donc onze jours à se rendre à la Lune, douze ans à parvenir au Soleil, trois cent soixante ans à atteindre Neptune aux limites du monde solaire. Voilà ce que ferait ce modeste boulet, l'ouvrage de nos mains! Que sera-ce donc quand, vingtuplant cette vitesse, nous le lancerons avec une rapidité de sept milles à la seconde! Ah! boulet superbe! splendide projectile! j'aime à penser que tu seras reçu là-haut avec les honneurs dus à un ambassadeur terrestre! Des hurrahs accueillirent cette ronflante péroraison, et J.-T. Maston, tout ému, s'assit au milieu des félicitations de ses collègues. «Et maintenant, dit Barbicane, que nous avons fait une large part à la poésie, attaquons directement la question. --Nous sommes prêts, répondirent les membres du Comité en absorbant chacun une demi-douzaine de sandwiches. --Vous savez quel est le problème à résoudre, reprit le président; il s'agit d'imprimer à un projectile une vitesse de douze mille yards par seconde. J'ai lieu de penser que nous y réussirons. Mais, en ce moment, examinons les vitesses obtenues jusqu'ici; le général Morgan pourra nous édifier à cet égard. --D'autant plus facilement, répondit le général, que, pendant la guerre, j'étais membre de la commission d'expérience. Je vous dirai donc que les canons de cent de Dahlgreen, qui portaient à deux mille cinq cents toises, imprimaient à leur projectile une vitesse initiale de cinq cents yards à la seconde. --Bien. Et la Columbiad [Les Américains donnaient le nom de Columbiad à ces énormes engins de destruction.] Rodman? demanda le président. --La Columbiad Rodman, essayée au fort Hamilton, près de New York, lançait un boulet pesant une demi-tonne à une distance de six milles, avec une vitesse de huit cents yards par seconde, résultat que n'ont jamais obtenu Armstrong et Palliser en Angleterre. --Oh! les Anglais! fit J.-T. Maston en tournant vers l'horizon de l'est son redoutable crochet. --Ainsi donc, reprit Barbicane, ces huit cents yards seraient la vitesse maximum atteinte jusqu'ici? --Oui, répondit Morgan. --Je dirai, cependant, répliqua J.-T. Maston, que si mon mortier n'eût pas éclaté... --Oui, mais il a éclaté, répondit Barbicane avec un geste bienveillant. Prenons donc pour point de départ cette vitesse de huit cents yards. Il faudra la vingtupler. Aussi, réservant pour une autre séance la discussion des moyens destinés à produire cette vitesse, j'appellerai votre attention, mes chers collègues, sur les dimensions qu'il convient de donner au boulet. Vous pensez bien qu'il ne s'agit plus ici de projectiles pesant au plus une demi-tonne! --Pourquoi pas? demanda le major. --Parce que ce boulet, répondit vivement J.-T. Maston, doit être assez gros pour attirer l'attention des habitants de la Lune, s'il en existe toutefois. --Oui, répondit Barbicane, et pour une autre raison plus importante encore. --Que voulez-vous dire, Barbicane? demanda le major. --Je veux dire qu'il ne suffit pas d'envoyer un projectile et de ne plus s'en occuper; il faut que nous le suivions pendant son parcours jusqu'au moment où il atteindra le but. --Hein! firent le général et le major, un peu surpris de la proposition. --Sans doute, reprit Barbicane en homme sûr de lui, sans doute, ou notre expérience ne produira aucun résultat. --Mais alors, répliqua le major, vous allez donner à ce projectile des dimensions énormes? --Non. Veuillez bien m'écouter. Vous savez que les instruments d'optique ont acquis une grande perfection; avec certains télescopes on est déjà parvenu à obtenir des grossissements de six mille fois, et à ramener la Lune à quarante milles environ (-- 16 lieues). Or, à cette distance, les objets ayant soixante pieds de côté sont parfaitement visibles. Si l'on n'a pas poussé plus loin la puissance de pénétration des télescopes, c'est que cette puissance ne s'exerce qu'au détriment de leur clarté, et la Lune, qui n'est qu'un miroir réfléchissant, n'envoie pas une lumière assez intense pour qu'on puisse porter les grossissements au-delà de cette limite. --Eh bien! que ferez-vous alors? demanda le général. Donnerez-vous à votre projectile un diamètre de soixante pieds? --Non pas! --Vous vous chargerez donc de rendre la Lune plus lumineuse? --Parfaitement. --Voilà qui est fort! s'écria J.-T. Maston. --Oui, fort simple, répondit Barbicane. En effet, si je parviens à diminuer l'épaisseur de l'atmosphère que traverse la lumière de la Lune, n'aurais-je pas rendu cette lumière plus intense? --Évidemment. --Eh bien! pour obtenir ce résultat, il me suffira d'établir un télescope sur quelque montagne élevée. Ce que nous ferons. --Je me rends, je me rends, répondit le major. Vous avez une façon de simplifier les choses!... Et quel grossissement espérez-vous obtenir ainsi? --Un grossissement de quarante-huit mille fois, qui ramènera la Lune à cinq milles seulement, et, pour être visibles, les objets n'auront plus besoin d'avoir que neuf pieds de diamètre. --Parfait! s'écria J.-T. Maston, notre projectile aura donc neuf pieds de diamètre? --Précisément. --Permettez-moi de vous dire, cependant, reprit le major Elphiston, qu'il sera encore d'un poids tel, que... --Oh! major, répondit Barbicane, avant de discuter son poids, laissez-moi vous dire que nos pères faisaient des merveilles en ce genre. Loin de moi la pensée de prétendre que la balistique n'ait pas progressé, mais il est bon de savoir que, dès le Moyen Age, on obtenait des résultats surprenants, j'oserai ajouter, plus surprenants que les nôtres. --Par exemple! répliqua Morgan. --Justifiez vos paroles, s'écria vivement J.-T. Maston. --Rien n'est plus facile, répondit Barbicane; j'ai des exemples à l'appui de ma proposition. Ainsi, au siège de Constantinople par Mahomet II, en 1453, on lança des boulets de pierre qui pesaient dix-neuf cents livres, et qui devaient être d'une belle taille. --Oh! oh! fit le major, dix-neuf cents livres, c'est un gros chiffre! --A Malte, au temps des chevaliers, un certain canon du fort Saint-Elme lançait des projectiles pesant deux mille cinq cents livres. --Pas possible! --Enfin, d'après un historien français, sous Louis XI, un mortier lançait une bombe de cinq cents livres seulement; mais cette bombe, partie de la Bastille, un endroit où les fous enfermaient les sages, allait tomber à Charenton, un endroit où les sages enferment les fous. --Très bien! dit J.-T. Maston. --Depuis, qu'avons-nous vu, en somme? Les canons Armstrong lancer des boulets de cinq cents livres, et les Columbiads Rodman des projectiles d'une demi-tonne! Il semble donc que, si les projectiles ont gagné en portée, ils ont perdu en pesanteur. Or, si nous tournons nos efforts de ce côté, nous devons arriver avec le progrès de la science, à décupler le poids des boulets de Mahomet II, et des chevaliers de Malte. --C'est évident, répondit le major, mais quel métal comptez-vous donc employer pour le projectile? --De la fonte de fer, tout simplement, dit le général Morgan. --Peuh! de la fonte! s'écria J.-T. Maston avec un profond dédain, c'est bien commun pour un boulet destiné à se rendre à la Lune. --N'exagérons pas, mon honorable ami, répondit Morgan; la fonte suffira. --Eh bien! alors, reprit le major Elphiston, puisque la pesanteur est proportionnelle à son volume, un boulet de fonte, mesurant neuf pieds de diamètre, sera encore d'un poids épouvantable! --Oui, s'il est plein; non, s'il est creux, dit Barbicane. --Creux! ce sera donc un obus? --Où l'on pourra mettre des dépêches, répliqua J.-T. Maston, et des échantillons de nos productions terrestres! --Oui, un obus, répondit Barbicane; il le faut absolument; un boulet plein de cent huit pouces pèserait plus de deux cent mille livres, poids évidemment trop considérable; cependant, comme il faut conserver une certaine stabilité au projectile, je propose de lui donner un poids de cinq mille livres. --Quelle sera donc l'épaisseur de ses parois? demanda le major. --Si nous suivons la proportion réglementaire, reprit Morgan, un diamètre de cent huit pouces exigera des parois de deux pieds au moins. --Ce serait beaucoup trop, répondit Barbicane; remarquez-le bien, il ne s'agit pas ici d'un boulet destiné à percer des plaques; il suffira donc de lui donner des parois assez fortes pour résister à la pression des gaz de la poudre. Voici donc le problème: quelle épaisseur doit avoir un obus en fonte de fer pour ne peser que vingt mille livres? Notre habile calculateur, le brave Maston, va nous l'apprendre séance tenante. --Rien n'est plus facile», répliqua l'honorable secrétaire du Comité. Et ce disant, il traça quelques formules algébriques sur le papier; on vit apparaître sous la plume des \(\pi\) et des \(x\) élevés à la deuxième puissance. Il eut même l'air d'extraire, sans y toucher, une certaine racine cubique, et dit: «Les parois auront à peine deux pouces d'épaisseur. --Sera-ce suffisant? demanda le major d'un air de doute. --Non, répondit le président Barbicane, non, évidemment. --Eh bien! alors, que faire? reprit Elphiston d'un air assez embarrassé. --Employer un autre métal que la fonte. --Du cuivre? dit Morgan. --Non, c'est encore trop lourd; et j'ai mieux que cela à vous proposer. --Quoi donc? dit le major. --De l'aluminium, répondit Barbicane. --De l'aluminium! s'écrièrent les trois collègues du président. --Sans doute, mes amis. Vous savez qu'un illustre chimiste français, Henri Sainte-Claire Deville, est parvenu, en 1854, à obtenir l'aluminium en masse compacte. Or, ce précieux métal a la blancheur de l'argent, l'inaltérabilité de l'or, la ténacité du fer, la fusibilité du cuivre et la légèreté du verre; il se travaille facilement, il est extrêmement répandu dans la nature, puisque l'alumine forme la base de la plupart des roches, il est trois fois plus léger que le fer, et il semble avoir été créé tout exprès pour nous fournir la matière de notre projectile! --Hurrah pour l'aluminium! s'écria le secrétaire du Comité, toujours très bruyant dans ses moments d'enthousiasme. --Mais, mon cher président, dit le major, est-ce que le prix de revient de l'aluminium n'est pas extrêmement élevé? --Il l'était, répondit Barbicane; aux premiers temps de sa découverte, la livre d'aluminium coûtait deux cent soixante à deux cent quatre-vingts dollars (-- environ 1,500 francs); puis elle est tombée à vingt-sept dollars (-- 150 F), et aujourd'hui, enfin, elle vaut neuf dollars (-- 48.75 F). --Mais neuf dollars la livre, répliqua le major, qui ne se rendait pas facilement, c'est encore un prix énorme! --Sans doute, mon cher major, mais non pas inabordable. --Que pèsera donc le projectile? demanda Morgan. --Voici ce qui résulte de mes calculs, répondit Barbicane; un boulet de cent huit pouces de diamètre et de douze pouces [Trente centimètres; le pouce américain vaut 25 millimètres.] d'épaisseur pèserait, s'il était en fonte de fer, soixante-sept mille quatre cent quarante livres; en fonte d'aluminium, son poids sera réduit à dix-neuf mille deux cent cinquante livres. --Parfait! s'écria Maston, voilà qui rentre dans notre programme. --Parfait! parfait! répliqua le major, mais ne savez-vous pas qu'à dix-huit dollars la livre, ce projectile coûtera... --Cent soixante-treize mille deux cent cinquante dollars (-- 928,437.50 F), je le sais parfaitement; mais ne craignez rien, mes amis, l'argent ne fera pas défaut à notre entreprise, je vous en réponds. --Il pleuvra dans nos caisses, répliqua J.-T. Maston. --Eh bien! que pensez-vous de l'aluminium? demanda le président. --Adopté, répondirent les trois membres du Comité. --Quant à la forme du boulet, reprit Barbicane, elle importe peu, puisque, l'atmosphère une fois dépassée, le projectile se trouvera dans le vide; je propose donc le boulet rond, qui tournera sur lui-même, si cela lui plaît, et se comportera à sa fantaisie. Ainsi se termina la première séance du Comité; la question du projectile était définitivement résolue, et J.-T. Maston se réjouit fort de la pensée d'envoyer un boulet d'aluminium aux Sélénites, «ce qui leur donnerait une crâne idée des habitants de la Terre»! VIII -------------------- L'HISTOIRE DU CANON Les résolutions prises dans cette séance produisirent un grand effet au-dehors. Quelques gens timorés s'effrayaient un peu à l'idée d'un boulet, pesant vingt mille livres, lancé à travers l'espace. On se demandait quel canon pourrait jamais transmettre une vitesse initiale suffisante à une pareille masse. Le procès verbal de la seconde séance du Comité devait répondre victorieusement à ces questions. Le lendemain soir, les quatre membres du Gun-Club s'attablaient devant de nouvelles montagnes de sandwiches et au bord d'un véritable océan de thé. La discussion reprit aussitôt son cours, et, cette fois, sans préambule. «Mes chers collègues, dit Barbicane, nous allons nous occuper de l'engin à construire, de sa longueur, de sa forme, de sa composition et de son poids. Il est probable que nous arriverons à lui donner des dimensions gigantesques; mais si grandes que soient les difficultés, notre génie industriel en aura facilement raison. Veuillez donc m'écouter, et ne m'épargnez pas les objections à bout portant. Je ne les crains pas! Un grognement approbateur accueillit cette déclaration. «N'oublions pas, reprit Barbicane, à quel point notre discussion nous a conduits hier; le problème se présente maintenant sous cette forme: imprimer une vitesse initiale de douze mille yards par seconde à un obus de cent huit pouces de diamètre et d'un poids de vingt mille livres. --Voilà bien le problème, en effet, répondit le major Elphiston. --Je continue, reprit Barbicane. Quand un projectile est lancé dans l'espace, que se passe-t-il? Il est sollicité par trois forces indépendantes, la résistance du milieu, l'attraction de la Terre et la force d'impulsion dont il est animé. Examinons ces trois forces. La résistance du milieu, c'est-à-dire la résistance de l'air, sera peu importante. En effet, l'atmosphère terrestre n'a que quarante milles (-- 16 lieues environ). Or, avec une rapidité de douze mille yards, le projectile l'aura traversée en cinq secondes, et ce temps est assez court pour que la résistance du milieu soit regardée comme insignifiante. Passons alors à l'attraction de la Terre, c'est-à-dire à la pesanteur de l'obus. Nous savons que cette pesanteur diminuera en raison inverse du carré des distances; en effet, voici ce que la physique nous apprend: quand un corps abandonné à lui-même tombe à la surface de la Terre, sa chute est de quinze pieds [Soit 4 mètres 90 centimètres dans la première seconde; à la distance où se trouve la Lune, la chute ne serait plus que de 1 mm 1/3, ou 590 millièmes de ligne.] dans la première seconde, et si ce même corps était transporté à deux cent cinquante-sept mille cent quarante-deux milles, autrement dit, à la distance où se trouve la Lune, sa chute serait réduite à une demi-ligne environ dans la première seconde. C'est presque l'immobilité. Il s'agit donc de vaincre progressivement cette action de la pesanteur. Comment y parviendrons-nous? Par la force d'impulsion. --Voilà la difficulté, répondit le major. --La voilà, en effet, reprit le président, mais nous en triompherons, car cette force d'impulsion qui nous est nécessaire résultera de la longueur de l'engin et de la quantité de poudre employée, celle-ci n'étant limitée que par la résistance de celui-là. Occupons-nous donc aujourd'hui des dimensions à donner au canon. Il est bien entendu que nous pouvons l'établir dans des conditions de résistance pour ainsi dire infinie, puisqu'il n'est pas destiné à être manœuvré. --Tout ceci est évident, répondit le général. --Jusqu'ici, dit Barbicane, les canons les plus longs, nos énormes Columbiads, n'ont pas dépassé vingt-cinq pieds en longueur; nous allons donc étonner bien des gens par les dimensions que nous serons forcés d'adopter. --Eh! sans doute, s'écria J.-T. Maston. Pour mon compte, je demande un canon d'un demi-mille au moins! --Un demi-mille! s'écrièrent le major et le général. --Oui! un demi-mille, et il sera encore trop court de moitié. --Allons, Maston, répondit Morgan, vous exagérez. --Non pas! répliqua le bouillant secrétaire, et je ne sais vraiment pourquoi vous me taxez d'exagération. --Parce que vous allez trop loin! --Sachez, monsieur, répondit J.-T. Maston en prenant ses grands airs, sachez qu'un artilleur est comme un boulet, il ne peut jamais aller trop loin! La discussion tournait aux personnalités, mais le président intervint. «Du calme, mes amis, et raisonnons; il faut évidemment un canon d'une grande volée, puisque la longueur de la pièce accroîtra la détente des gaz accumulés sous le projectile, mais il est inutile de dépasser certaines limites. --Parfaitement, dit le major. --Quelles sont les règles usitées en pareil cas? Ordinairement la longueur d'un canon est vingt à vingt-cinq fois le diamètre du boulet, et il pèse deux cent trente-cinq à deux cent quarante fois son poids. --Ce n'est pas assez, s'écria J.-T. Maston avec impétuosité. --J'en conviens, mon digne ami, et, en effet, en suivant cette proportion, pour un projectile large de neuf pieds pesant vingt mille livres, l'engin n'aurait qu'une longueur de deux cent vingt-cinq pieds et un poids de sept millions deux cent mille livres. --C'est ridicule, répartit J.-T. Maston. Autant prendre un pistolet! --Je le pense aussi, répondit Barbicane, c'est pourquoi je me propose de quadrupler cette longueur et de construire un canon de neuf cents pieds. Le général et le major firent quelques objections; mais néanmoins cette proposition, vivement soutenue par le secrétaire du Gun-Club, fut définitivement adoptée. «Maintenant, dit Elphiston, quelle épaisseur donner à ses parois. --Une épaisseur de six pieds, répondit Barbicane. --Vous ne pensez sans doute pas à dresser une pareille masse sur un affût? demanda le major. --Ce serait pourtant superbe! dit J.-T. Maston. --Mais impraticable, répondit Barbicane. Non, je songe à couler cet engin dans le sol même, à le fretter avec des cercles de fer forgé, et enfin à l'entourer d'un épais massif de maçonnerie à pierre et à chaux, de telle façon qu'il participe de toute la résistance du terrain environnant. Une fois la pièce fondue, l'âme sera soigneusement alésée et calibrée, de manière à empêcher le vent [C'est l'espace qui existe quelquefois entre le projectile et l'âme de la pièce.] du boulet; ainsi il n'y aura aucune déperdition de gaz, et toute la force expansive de la poudre sera employée à l'impulsion. --Hurrah! hurrah! fit J.-T. Maston, nous tenons notre canon. --Pas encore! répondit Barbicane en calmant de la main son impatient ami. --Et pourquoi? --Parce que nous n'avons pas discuté sa forme. Sera-ce un canon, un obusier ou un mortier? --Un canon, répliqua Morgan. --Un obusier, repartit le major. --Un mortier!» s'écria J.-T. Maston. Une nouvelle discussion assez vive allait s'engager, chacun préconisant son arme favorite, lorsque le président l'arrêta net. «Mes amis, dit-il, je vais vous mettre tous d'accord; notre Columbiad tiendra de ces trois bouches à feu à la fois. Ce sera un canon, puisque la chambre de la poudre aura le même diamètre que l'âme. Ce sera un obusier, puisqu'il lancera un obus. Enfin, ce sera un mortier, puisqu'il sera braqué sous un angle de quatre-vingt-dix degrés, et que, sans recul possible, inébranlablement fixé au sol, il communiquera au projectile toute la puissance d'impulsion accumulée dans ses flancs. --Adopté, adopté, répondirent les membres du Comité. --Une simple réflexion, dit Elphiston, ce can-obuso-mortier sera-t-il rayé? --Non, répondit Barbicane, non; il nous faut une vitesse initiale énorme, et vous savez bien que le boulet sort moins rapidement des canons rayés que des canons à âme lisse. --C'est juste. --Enfin, nous le tenons, cette fois! répéta J.-T. Maston. --Pas tout à fait encore, répliqua le président. --Et pourquoi? --Parce que nous ne savons pas encore de quel métal il sera fait. --Décidons-le sans retard. --J'allais vous le proposer. Les quatre membres du Comité avalèrent chacun une douzaine de sandwiches suivis d'un bol de thé, et la discussion recommença. «Mes braves collègues, dit Barbicane, notre canon doit être d'une grande ténacité, d'une grande dureté, infusible à la chaleur, indissoluble et inoxydable à l'action corrosive des acides. --Il n'y a pas de doute à cet égard, répondit le major, et comme il faudra employer une quantité considérable de métal, nous n'aurons pas l'embarras du choix. --Eh bien! alors, dit Morgan, je propose pour la fabrication de la Columbiad le meilleur alliage connu jusqu'ici, c'est-à-dire cent parties de cuivre, douze parties d'étain et six parties de laiton. --Mes amis, répondit le président, j'avoue que cette composition a donné des résultats excellents; mais, dans l'espèce, elle coûterait trop cher et serait d'un emploi fort difficile. Je pense donc qu'il faut adopter une matière excellente, mais à bas prix, telle que la fonte de fer. N'est-ce pas votre avis, major? --Parfaitement, répondit Elphiston. --En effet, reprit Barbicane, la fonte de fer coûte dix fois moins que le bronze; elle est facile à fondre, elle se coule simplement dans des moules de sable, elle est d'une manipulation rapide; c'est donc à la fois économie d'argent et de temps. D'ailleurs, cette matière est excellente, et je me rappelle que pendant la guerre, au siège d'Atlanta, des pièces en fonte ont tiré mille coups chacune de vingt minutes en vingt minutes, sans en avoir souffert. --Cependant, la fonte est très cassante, répondit Morgan. --Oui, mais très résistante aussi; d'ailleurs, nous n'éclaterons pas, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000